On the crystal structure of bis(dipicolinato)ferrate(III) dihydrate. By Richard E. Marsh, The Beckman
Institute,* California Institute of Technology, Pasadena, California 91125, USA
(Received 21 October 1992; accepted 3 November 1992)

Abstract

The structure of $\left[\mathrm{H}_{5} \mathrm{O}_{2}\right]^{+}\left[\mathrm{Fe}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]^{-}$was recently described and refined [Cousson, Nectoux \& Rizkalla (1992). Acta Cryst. C48, 1354-1357] in space group Pnn2 [orthorhombic $, \quad a=8.860(8), \quad b=11.007$ (2), $\quad c=$ 16.316 (4) $\AA, Z=4]$; it is better described in Pnna. Revised coordinates are given.

Coordinates in space group Pnna were obtained from those in Table 1 of Cousson et al. (1992) by incrementing x by 0.25 , decrementing z by about 0.227 , and averaging over equivalent atoms in the two molecules. Refinement by full-matrix least squares was based on $1554 F_{\text {obs }}$ values recovered from SUP 54982; the quantity minimized was $\sum w\left(F_{\text {obs }}^{2}-F_{\text {calc }}^{2}\right)^{2}$, with weights w assigned according to Hughes (1941). At convergence [$\left.(\Delta / \sigma)_{\max }=0.04\right] R$ was 0.041 for 148 parameters \{coordinates of all atoms; $U_{i j}$ values for $\mathrm{Fe}, \mathrm{C}, \mathrm{N}$ and O atoms; isotropic B values for H atoms; scale factor [final value 0.988 (2)]; and extinction coefficient $\left.\left[0.79(6) \times 10^{-6}\right]\right\}$. For the earlier Pnn 2 model, Cousson et al. (1992) also reported an R value of 0.041 , for 251 parameters. Included in SUP 54982 were 12 reflections of the type $h k 0$ with h odd, which are forbidden in Pnna. All were extremely weak, with $F_{\text {obs }}$ values that obviously were close to the 'unobserved' cut-off of $I \leq 3 \sigma(I)$ (Cousson et al., 1992). Their presence, if real, can surely be blamed on the Renninger effect.

Final Pnna coordinates for the heavy atoms are given in Table $1 . \dagger$ Changes from the Pnn 2 coordinates range up to $0.12 \AA$ - highly significant in view of the e.s.d.'s of $0.005 \AA$ or less. Most of the general features of the structure remain unchanged; in particular, the inequalities in the $\mathrm{Fe}-\mathrm{N}$ [2.071 (3), 2.034 (3) \AA] and $\mathrm{Fe}-\mathrm{O}[2.004$ (2), 2.038 (2) \AA] * Contribution No. 8752. \dagger Lists of structure factors, $U_{i j}$ values, coordinates and B values for the H atoms, and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55678 (9 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BU0317]

Table 1. Coordinates $\left(\times 10^{4}\right)$ and $U_{\text {eq }}$ values $\left(\AA^{2} \times 10^{4}\right)$, space group Pnna

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
x	y	z	$U_{\text {eq }}$	
Fe	2500	0	$3114(4)$	$331(1)$
$\mathrm{C}(1)$	$1044(4)$	$-1726(3)$	$4171(2)$	$388(7)$
$\mathrm{C}(2)$	$1774(3)$	$-877(3)$	$4774(2)$	$338(6)$
$\mathrm{C}(3)$	$1745(4)$	$-903(4)$	$5619(2)$	$448(8)$
$\mathrm{C}(4)$	2500	0	$6036(3)$	$504(12)$
$\mathrm{C}(5)$	$4803(3)$	$-998(3)$	$2057(2)$	$378(7)$
$\mathrm{C}(6)$	$3622(3)$	$-533(3)$	$1471(2)$	$290(6)$
$\mathrm{C}(7)$	$3649(4)$	$-576(3)$	$629(2)$	$408(7)$
$\mathrm{C}(8)$	2500	0	$205(3)$	$490(12)$
$\mathrm{N}(1)$	2500	0	$4383(2)$	$314(7)$
$\mathrm{N}(2)$	2500	0	$1867(2)$	$261(6)$
$\mathrm{O}(1)$	$1359(3)$	$-1505(2)$	$3420(1)$	$470(6)$
$\mathrm{O}(2)$	$209(3)$	$-2553(3)$	$4402(2)$	$559(6)$
$\mathrm{O}(3)$	$4437(3)$	$-891(2)$	$2811(2)$	$449(5)$
$\mathrm{O}(4)$	$5990(3)$	$-1389(3)$	$1774(2)$	$625(8)$
$\mathrm{O}(W)$	$-1150(3)$	$-3298(3)$	$3021(2)$	$531(7)$

bond lengths to the two picolinate dianions, noted by Cousson et al. (1992), become even more significant. However, contrary to the results of Cousson et al. (1992) the carboxylate groups in these two dianions now look to have matching $\mathrm{C}-\mathrm{O}$ bond lengths, at 1.279 (3) \AA to the $\mathrm{Fe}-$ coordinated O atoms and 1.229 (3) \AA to the others (which accept strong hydrogen bonds from the $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$cation); there is no indication of equal $\mathrm{C}-\mathrm{O}$ distances and, hence, 'equal distribution of charge on both O atoms' in either carboxylate group. The central $\mathrm{O} \cdots \mathrm{O}$ bond in the $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$ group, which lies across a crystallographic twofold axis, is short at 2.444 (6) \AA - a distance suggestive of a symmetric $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bond. Attempts to refine the central H atom either as disordered between two sites on opposite sides of the C_{2} axis or as a single anisotropic atom lying on the C_{2} axis were inconclusive; in the final refinement cycles it was modeled as ordered and isotropic $\left[B=16(4) \AA^{2}\right]$, on the C_{2} axis.

References

Cousson, A., Nectoux, F. \& Rizkalla, E. N. (1992). Acta Cryst. C48, 1354-1357.
Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737-1752.
(C) 1993 International Union of Crystallography

